T-110.5121 Mobile Cloud Computing Business in Cloud Computing 03.10.2012

Yrjö Raivio

Aalto University, School of Science

Department of Computer Science and Engineering

Data Communications Software

Email: yrjo.raivio(at)aalto.fi

Course email: t-110.5121(at)tkk.fi

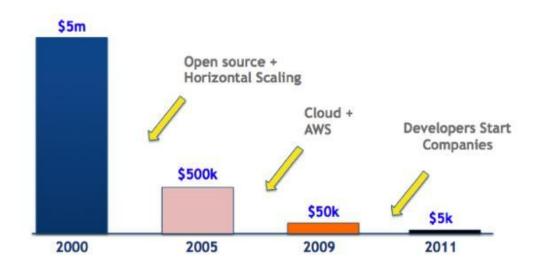
History

- "The horse is here to stay, but the automobile is only a novelty - a fad", President of the Michigan Savings Bank, 1903
- "..we expected to get orders for five machines, we came home with orders for 18.", Thomas Watson, Jr., April 28, 1953
- "There is no reason for any individual to have a personal computer in their home."
 Ken Olsen, President, Digital Equipment Corp., 1980

FIG. 2: CLOUD OPPORTUNITY

		Technology	Economic	Business Model
Mainframe	10 10	Centralized compute and storage Thin clients	Optimized for efficiency because of the high cost	High up-front costs for hardware and software
Client/ Server		PCs and servers for distributed compute, storage, and so on	Optimized for agility because of the low cost	Perpetual license for OS and application software
Cloud		Large DCs, ability to scale, commodity hardware, devices	Efficiency and agility an order of magnitude better	Ability to pay as you go, and only for what you use

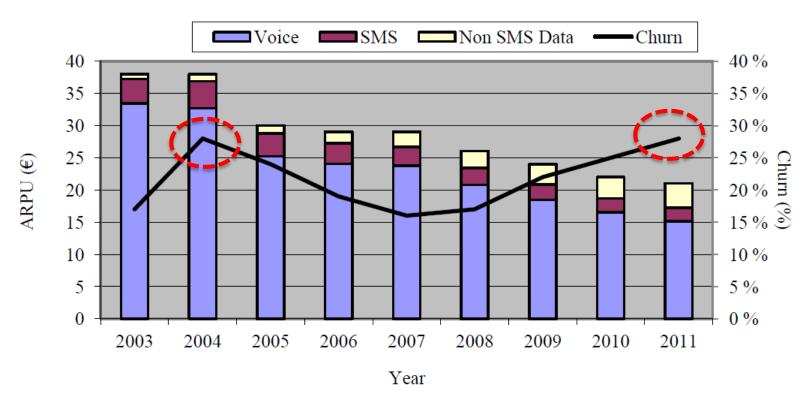
Source: Microsoft.


Sources: Joe Sherlock, The View Though The Windshield, available at: http://www.joesherlock.com/nwsltr1.html; Rolf Harms and Michael Yamartino: The Economics of the Cloud, Nov. 2010.

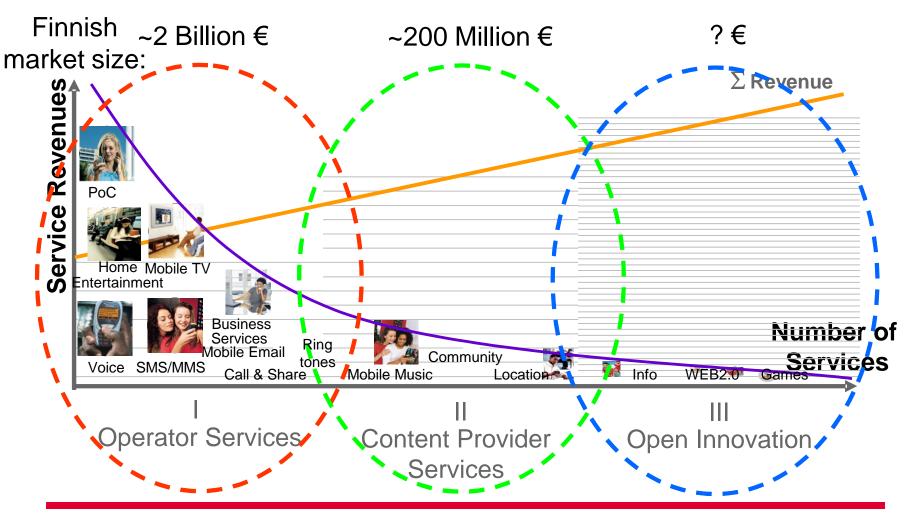
Some numbers

- Global ICT business size
 - 2008: \$ 383 B, 4% cloud
 - 2012: \$494 B, 9% cloud
- Largest growth in storage
- SMEs have best opportunities to adapt
- Also small countries with good infrastructure
- Startup costs for SMEs dropped dramatically

Costs to Launch an Internet Tech Startup


Source: F. Etro, The Economic Impact of Cloud Computing on Business Creation, Employment and Output in Europe, 2009

Source: M. Suster, It's Morning in Venture Capital, blog, May 23, 2012

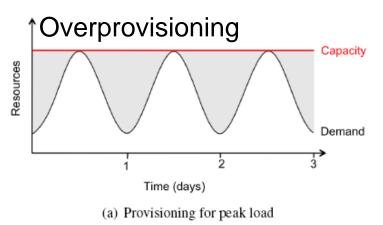


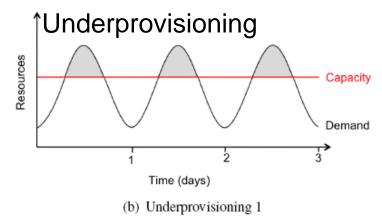
Operators have challenges ahead: decreasing ARPU and increasing churn

TeliaSonera mobile ARPU and churn in Finland

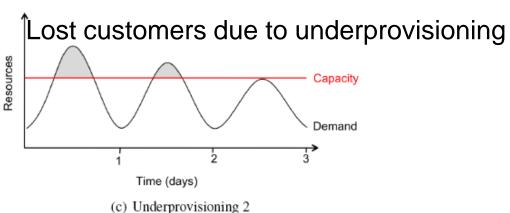
Long Tail and Mobile service segments

Economies of scale


- Cheaper MIPS (5-7 times)
- Better utilization of computing resources (5-10% to 60-80%)
- Multi-tenancy: one instance can serve several customers
- Less admin people per server (from 1:100 up to 1:10 000)


Worth 1\$ IT requires 8\$ admin costs FIG. 4: ECONOMIES OF SCALE (ILLUSTRATIVE) FIG. 15: ECONOMIES OF SCALE IN THE CLOUD \$5,000 \$4,000 TCO/Server (at average utilization) Cost per MIPS \$3,000 Mainframe \$2,000 Client/server 80% TCO Reduction \$1,000 Cloud 100 1,000 10,000 100,000 Number of MIPS # of Servers in Public Cloud Source: Microsoft. Source: Microsoft

Source: Rolf Harms and Michael Yamartino: The Economics of the Cloud, Nov. 2010.



Elasticity – pay-as-you-go

- Avoid high upfront investment, avoid risk
- Adapt to changing business
- Buy or lease
- Amortizise value to investment period

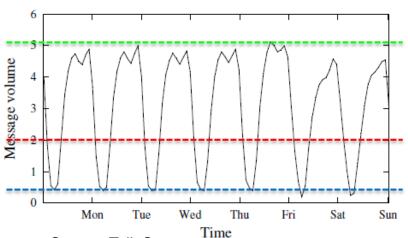
Source: Ambrust et al, Above the Clouds: A Berkeley View of Cloud Computing, Feb 2009

Amortization

Hybrid cloud

- Public vs. Private
- www.cloudonomics.com

Cost structure by Greenberg (2009):


- ~45% Servers CPU, memory, storage
- ~25% Infrastructure
- ~15% Power draw
- ~15% Network Links
- Staff? 1\$ IT: 8\$ Admin!
- Equated Monthly Installment

$$A_m = E \frac{\frac{r}{12} (1 + \frac{r}{12})^m}{(1 + \frac{r}{12})^m - 1}$$

Net Present Value

$$NPV = \sum_{0}^{N} \frac{P_{T} - C_{T}}{(1+r)^{T}} + \frac{S}{(1+r)^{N}} - E$$

Case SMSC

Source: TeliaSonera

E = basic investment

N, m = length of the investment

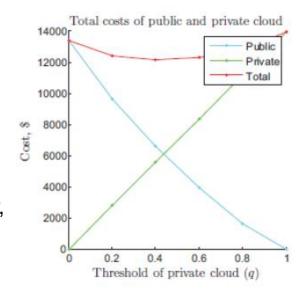
R = rate of interest

Pt = annual revenue

Ct = annual cost

S = residual value

Cost comparison

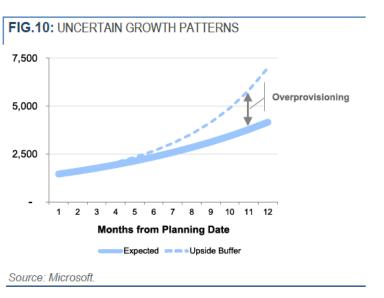

Public cloud

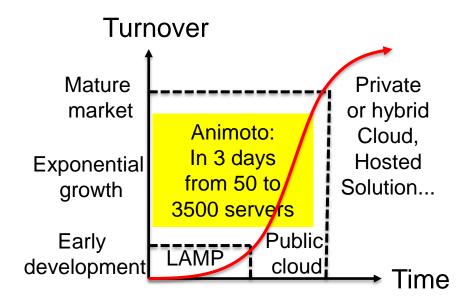
- example <u>Amazon Elastic Compute Cloud (EC2)</u>
- Price per CPU hour and type, data transfer out, storage, additional services (monitoring, elastic IP, load balancing)
- Spot pricing also supported
- One Large instance (EU) = 245 \$/month
- Reserved 3 year Large instance = 101 \$/month

Private cloud

- · Case Aalto DCS private cloud
- 192 cores, investment 50 k€
- Monthly cost with 5% interest rate, 3 year amortization period

$$A_m = 50000 \frac{\frac{0.05}{12} \left(1 + \frac{0.05}{12}\right)^{36}}{\left(1 + \frac{0.05}{12}\right)^{36} - 1} = 1512 \text{ month}$$


Always available


- Anyone, anytime, anywhere
- High availability?
- Typical public cloud SLA promise
 - 99.95% = max 4 h 23 min down time per year
- Telecom
 - 99.999% = 5 min
- Availability Zone, fully (?) independent computing systems
- Using two Availability Zones

$$P_P = 1 - P_F^2 = 1 - (1 - A)^2 = 99.9999\%$$

Resource planning

- Resources can be optimized to meet service needs
- Service integration time can be shortened, example Short Message Service Center setup from 2 weeks to 4 minutes

Source: Rolf Harms and Michael Yamartino: The Economics of the Cloud, Nov. 2010.

Questions?

Contacts:

Teacher: Yrjo Raivio, A122

Course staff: t-110.5121(at)tkk.fi

